Velocity and Other Rates of Change

Instantaneous Rate of Change

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Example-Enlarging Circles

a) Find the rate of change of the area A of a circle with respect to its radius r.
b) Evaluate the rate of change of A at $r=5$ and $r=10$.

$$
A=\pi r^{2}
$$

a) $\frac{d A}{d r}=\frac{d}{d r}\left(\pi r^{2}\right)=\pi \bullet 2 r=2 \pi r$
b) $r=5 \rightarrow 2 \pi(5) \approx 31.4$

$$
r=10 \rightarrow 2 \pi(10) \approx 62.8
$$

Motion along a line

-Suppose that an object is moving across a line so we know that its position s along the line is a function of time t :

-The displacement of the object over the time interval from to to $t+\Delta t$ is

$$
\Delta s=f(t+\Delta t)-f(t)
$$

-The average velocity of the object over that time interval is

$$
v_{\text {avg }}=\frac{\text { displacement }}{\text { travel time }}=\frac{\Delta s}{\Delta t}=\frac{f(t+\Delta t)-f(t)}{\Delta t}
$$

Instantaneous Velocity

-The instantaneous velocity is the derivative of the position function $s=f(t)$ with respect to time

$$
v(t)=\frac{d s}{d t}=\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}
$$

Speed

-Speed is the absolute value of velocity

$$
\text { Speed }=|v(t)|=\left|\frac{d s}{d t}\right|
$$

Acceleration

-Acceleration is the derivative of velocity with respect to time. If a bodies velocity at time t is $v(t)=\frac{d s}{d t}$, then a bodies acceleration at time t is

$$
a(t)=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}
$$

Example-Modeling a Vertical Motion

-A blast propels a heavy rock straight up with a launch velocity of 160 $\mathrm{ft} / \mathrm{sec}$. It reaches a height of

$$
s=160 t-16 t^{2} \text { feet after } t \text { seconds }
$$

a) How high does the rock got?

$$
v=\frac{d s}{d t}=\frac{d}{d t}\left(160 t-16 t^{2}\right)=160-32 t
$$

-a rock has velocity 0 at the top so

$$
160-32 t=0 \text { or } t=5 \mathrm{sec}
$$

-so the maximum height of a rock at $t=5 \mathrm{sec}$ is

$$
160(5)-16(5)^{2}=400 \mathrm{ft}
$$

b) What is the velocity and speed of a rock when it is 256 ft above the ground on the way up/down.
-To find the velocity when the height is 256 ft determine the two values of t which $s(t)=256$

$$
\begin{aligned}
& s(t)=160 t-16 t^{2}=256 \\
& 16 t^{2}-160 t+256=0 \\
& 16\left(t^{2}-10 t+16\right)=0 \\
& (t-2)(t-8)=0
\end{aligned}
$$

$$
t=2 \mathrm{sec} \text { or } t=8 \mathrm{sec}
$$

-The velocity at each of these times is

$$
\begin{aligned}
& v(t)=160-32 t \\
& v(2)=160-32(2)=96 \mathrm{ft} / \mathrm{sec} \\
& v(8)=160-32(8)=-96 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

-At both instances the speed is $96 \mathrm{ft} / \mathrm{sec}$.
c) What is the acceleration of the rock at any time t during its flight?

$$
a=\frac{d v}{d t}=\frac{d}{d t}(160-32 t)=-32 \mathrm{ft} / \mathrm{sec}^{2}
$$

d) When does the rock hit the ground?
-The rock hits the ground at the positive time for which $s=0$.

$$
\begin{aligned}
& 160 t-16 t^{2}=0 \\
& -16 t(t-10)=0 \\
& t=0 \text { or } t=10
\end{aligned}
$$

-It was launched at $t=0$ so it hit the ground 10 seconds later.

Example-Marginal Cost and Marginal Revenue

Suppose it costs $c(x)=x^{3}-6 x^{2}+15 x$ dollars to produce x radiators when 8 to 10 radiators are produced and that $r(x)=x^{3}-3 x^{2}+12 x$ gives the dollar revenue from selling \times radiators.
-You currently produce 10 radiators a day.
-Find the marginal cost and marginal revenue.
-The marginal cost of producing one more radiator when you are producing 10 is $c^{\prime}(10)$.

$$
\begin{aligned}
& c^{\prime}(x)=\frac{d}{d x}\left(x^{3}-6 x^{2}+15 x\right)=3 x^{2}-12 x+15 \\
& c^{\prime}(10)=3(100)-120+15=195 \text { dollars }
\end{aligned}
$$

-Marginal Revenue is:

$$
\begin{aligned}
& r^{\prime}(x)=\frac{d}{d x}\left(x^{3}-3 x^{2}+12 x\right)=3 x^{2}-6 x+12 \\
& r^{\prime}(10)=3(100)-60+12=252 \text { dollars }
\end{aligned}
$$

-So it makes sense to produce another radiator!

